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J. Phys. A: Math. Gen. 19 (1986) 3807-3821. Printed in Great Britain 

Minimal sensitivity optimisation of perturbatively 
approximated excited-state wavefunctions of the quartic 
oscillator? 

S K Kauffmann and S M Perez 
Department of Physics, University of Cape Town, Rondebosch, Cape Province, 7700 
Republic of South Africa 

Received 28 January 1986 

Abstract. The direct point-by-point application of minimal sensitivity optimisation to the 
first-order perturbative approximation to the ground-state wavefunction of the quartic 
oscillator, carried out previously, is extended to low-lying excited states. An analytic 
formula for the derivative with respect to the redundant parameter is developed and used 
to obtain the minimally sensitive value for this parameter as a function of configuration 
space. Generally, more than one such minimally sensitive value is found at each configur- 
ation space point-these values are categorised into disjoint continuous curves. For all the 
cases studied, it has proved possible to piece together sections of such curves in an 
unambiguous manner so as to obtain optimised wavefunction approximations which are 
both renormalisable and continuously differentiable. Comparison of these optimised 
wavefunction approximations with the exact results revealed satisfactory agreement, par- 
ticularly in the large I x 1 asymptotic region where orthodox perturbation methods fail 
completely due to the strong coupling. 

1. Introduction 

In a previous paper (Kauffmann and Perez 1984) we have outlined the direct optimisa- 
tion of perturbative approximations to configuration space wavefunctions using 
Stevenson's principle of minimal sensitivity (PMS)  (Stevenson 1981) and have applied 
this technique to the ground-state wavefunction of the quartic oscillator. The success 
of this new method in dealing with the ground-state wavefunction was encouraging, 
but a demonstration of its ability to decently approximate the excited-state wavefunc- 
tions as well would be even more persuasive. The algebraic manipulation used in 
optimising the perturbative ground state of the quartic oscillator rapidly becomes more 
laborious for the excited states as the principal quantum number increases. We have 
managed to overcome this by making use of the harmonic oscillator generating function 
and raising and lowering operators to deduce an  analytic closed form for the derivative 
with respect to the redundant parameter of the first-order perturbative approximation 
to the quartic oscillator nth stationary-state wavefunction. 

Having thus achieved the same degree of analytic progress for the nth stationary 
state as we previously had attained for only the ground state, we apply numerical 
minimum finding methods to locate, at each configuration space point x, the minimally 
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sensitive value of the redundant parameter. Very frequently an  ambiguity is encoun- 
tered, where more than one such value exists at a given x. In the case of the ground 
state, we saw that only one of the possible minimally sensitive continuous dependences 
of the redundant parameter on x could yield a renormalisable wavefunction approxima- 
tion. For the excited states it turns out that none of the possible minimally sensitive 
continuous dependences of the redundant parameter on x yields, by itself, a renormalis- 
able wavefunction approximation. However, for all the excited states studied, it proved 
possible to unambiguously piece together sections of two or  more such continuous 
dependences in such a way as to obtain a renormalisable and continuously differentiable 
wavefunction approximation. 

The accuracy of these optimised approximations is quite acceptable, particularly 
in the large 1 x 1 asymptotic region where unoptimised perturbation theory breaks down 
completely. The number of pieced together sections needed for the x-dependent 
redundant parameter increases with the principal quantum number of the excited state, 
making its graph increasingly jagged, although the corresponding wavefunction 
approximations are, of course, completely smooth (continuously differentiable). 

In § 2 we briefly review the use of PMS for the optimisation of first-order perturbative 
approximations, including circumstances where this yields exact results, while in § 3 
we present the analytic formulae required for the application of this method to the 
nth stationary-state wavefunction of the quartic oscillator. In § 4, numerical results, 
in both graphical and abbreviated tabular form, are given for the quartic oscillator 
ground state and lowest four excited states; the need for and method of piecing together 
sections of certain minimally sensitive continuous dependences of the redundant 
parameter on x is described and illustrated. 

2. PMS optimisation of first-order perturbative approximations 

PMS optimisation can be applied to choose between those perturbative approximations 
to a physical quantity which result from the different members of a parametrised class 
of unperturbed Hamiltonians. The exact value of the physical quantity under consider- 
ation depends only on the exact Hamiltonian; it is entirely independent of which 
unperturbed Hamiltonian is chosen to obtain its perturbative approximation. Thus it 
is independent of the value of the parameter which selects the member of the class of 
unperturbed Hamiltonians being considered. Normally, however, the perturbative 
approximation to the exact value can be expected to depend on the unperturbed 
Hamiltonian used, and thus on the value of the parameter which selects this unperturbed 
Hamiltonian. Appealing to the commonsense idea that approximations should be 
constructed so as to incorporate known properties of the exact result to the greatest 
extent possible (Stevenson 1981), we readily arrive at the prescription that the optimum 
value of the redundant parameter occurs where the corresponding perturbative approxi- 
mations are least sensitive to small changes in it. 

Let us denote the exact Hamiltonian of the physical system under discussion as H 
and the parametrised class of unperturbed Hamiltonians as H o ( A ) ,  where A = 
( A , ,  A z ,  . . , A,)  is a multidimensional (vector) parameter. We may write 

H = H , ( A ) +  V(A) (2 . la )  
where, of course, 

V ( A ) = ( H - H 0 ( A ) )  (2.lb) 
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and proceed to calculate perturbative approximations to a physical quantity-these 
consist of the sums of all the perturbative contributions through some given order in 
V(A). Such approximations can normally be expected to vary with A, though the exact 
value of the physical quantity is completely insensitive to A. PMS instructs us to choose 
the A value for the optimum approximation as that one whose approximation is the 
least sensitive to small changes in A. 

An interesting special case, albeit one which cannot be practically exploited, occurs 
when there exists a particular value A '  of A such that 

H = H,,(A'). ( 2 . 2 u )  

In  such a case 

V(A = A')  = 0 ( 2 . 2 b )  

causing all second- or higher-order perturbative contributions (in V( A ) )  to any physical 
quantity to be stationary in A at A = A ' .  The sum of all orders of perturbative 
contributions in V(A) is, of course, the exact result for the value of the physical 
quantity, which we have seen to be constant in A, i.e. stationary at all A-in particular 
at A = A' .  Thus the sum of the zeroth- andjrs t -order perturbative contributions in V(A)  
to the physical quantity (namely its first-order perturbative approximation) must 
consequently be stationary in A at A = A ' .  Thus if we perform PMS optimisation of a 
first-order perturbative approximation in this context to any physical quantity, we will 
find a minimally sensitive (stationary) value for A at A = A' .  At this value of A, V(A)  
vanishes and  &(A)  = H, causing the first-order perturbative approximation to become 
exact. 

Thus, in the case where equation ( 2 . 2 ~ )  holds, PMS optimisation obtains the exact 
result already from Jirst-order perturbation theory (and also, of course from any higher- 
order perturbative approximation). However, equation ( 2 . 2 ~ )  will not hold true in 
any practical case, for it implies that H is completely solvable, since &(A') ,  an  
unperturbed Hamiltonian, is required to be so. Nonetheless, there is some insight to 
be gained from the above exercise-if & ( A )  well approximates H, at least for the 
physical quantity under investigation, for some value A '  of A, then we may already 
expect PMS optimisation of Jrst-order perturbation theory to yield a rather accurate 
result. It has, indeed, been observed that PMS optimisation often does give surprisingly 
good results from first-order perturbation theory (Stevenson 1981). We note that 
equation ( 2 . 2 ~ )  is a generalisation of the condition given in our previous paper 
(Kauffmann and Perez 1984), where we had required that &(A)  be a linear form in A. 

3. Application of PMS to the configuration space stationary states of the quartic 
oscillator 

The quartic oscillator is described by the exact Hamiltonian 

H = $ ( p Z + x 4 )  ( 3 . 1 ~ )  
which we approximate by a parametrised class of unperturbed harmonic oscillator 
Hamiltonians 

( 3 . 1 6 )  H,(A) = ;( p 2 +  A2x') 

resulting in the perturbative potential 

V(A ) = $(x"  - A 2 x 2 ) .  ( 3 . 1 ~ )  
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To carry out the first-order perturbation of the stationary states of & ( A ) ,  it is 
convenient to express V(A) in terms of the harmonic oscillator stationary-state raising 
and lowering operators. These are 

a =  (2A)-”2(ip+Ax) (3.2a) 

and 

a + ~ ( 2 A ) - ” ~ (  - @ + A x ) .  (3.26) 

The unperturbed harmonic oscillator stationary-state wavefunctions, ?ko)(x; A ) ,  n = 
0, 1,2, . . , which satisfy the energy eigenvalue equations 

H,(A)?~P)(x; A )  = EJP)(A)?\II)(X; A )  E ~ P ) ( A )  = ( n  +;)A n =o, 1,2, .  . . (3.3a) 

are affected by a and a +  according to the equations 

aqko’(x; A )  = r~”’?jP!~(x; A )  (3.3b) 

and 

a’V\Io’(x; A )  = ( n  + l ) 1 ’ 2 V ~ o ~ l ( x ;  A ) .  (3.3c) 

The explicit form of the normalised unperturbed harmonic oscillator ground-state 
wavefunction is given by 

9io’(x; A )  = ( A / T ) ” ~  exp( -;Ax’) (3.4a) 

which, by repeated application of the raising operator a+, can be made to yield the 
nth unperturbed harmonic oscillator excited-state wavefunction, 

V‘,O)(x; A )  = ( n  !)-1’2(a’)”V~’(x; A ) .  (3.46) 
Using equation (3.2) we can express the coordinate operator x in terms of a and a+ ,  

(3.5) 
permitting us to re-express the perturbative potential V(A), equation (3.lc), in terms 
of a and a + :  

V(A) = (8A2)-’(a4+ 2[(2a+a + 3) - A 3 ] a 2 +  {3[2(a+a)2+2a+a + 13 
- 2A 3 (  2a+a  + 1 )} + 2( a’) ’ [  (2a +a + 3) - A ’1 + ( a’)4) .  

x = (2A)--’/’(a + a’) 

(3.6) 
Thus, combining equations (3.6), (3.3b) and ( 3 . 3 ~ )  we find 

V(A)V‘,O)(x; A)=(8A2) - ’ { [n (n  - I ) ( n  -2)(n -3)]’’2’Pko!d(~; A )  

+2[(2n-1)-A3][n(n -l)]”2’4’‘,0?2(~; A )  

+[3(2n2+2n+1)-2A3(2n+1)]V‘,0’(x; A )  

+ 2[ ( 2 n  + 3) - A3][  ( n  + 1) ( n  + 2)]1’2q!?2(~; A )  

+ [ ( n  + 1 ) ( n  + 2) ( n  + 3) ( n  + 411 ”29214( x; A)}. (3.7) 
The unperturbed basis matrix elements of V(A), which may be read off from 

equation (3.7), enable us to write down the first-order perturbative approximations 
(sum of the zeroth- plus first-order contributions in V(A)) to both the energy eigenvalues 
and the stationary-state wavefunctions of the quartic oscillator. The first-order perturba- 
tive approximation to the energy eigenvalues is 

E!’.’’(A) = ( n + t ) ~  + ( ~ ~ ~ ) - ‘ [ 3 ( 2 n ~ + 2 n + 1 ) - 2 ~ ~ ( 2 ~ + 1 ) ]  (3.8) 
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which, of course, varies with the value of the 'redundant' parameter A. We invoke 
PMS to make an optimal choice of A, namely that value of A for which Eko*"(A) is 
minimally sensitive to small changes in A, 

a E ~ o . ' l ( A ) / d A  = i [ ( 2 n + 1 ) - 3 ( 2 n 2 + 2 n + l ) A - 3 ] = 0 .  (3.9a) 

This results in the energy-optimised value of A, which we note depends on the principal 
quantum number n, to be 

A, = [3(2n2+2n + 1)/(2n+ 1)p3 (3.9b) 

resulting in the PMs-optimised first-order perturbative approximation to the energy 
eigenvalues (Stevenson 1981) 

E y x ' j ( A , )  =i[3(2n2+2n + 1)(2n + 1)2]1'3 n = 0 , 1 , 2  , . . .  . (3.9c) 

It has been noted (Stevenson 1981) that equation ( 3 . 9 ~ )  is never in error by more than 
2% for the energy eigenvalue spectrum of the quartic oscillator. 

Similarly, we use the unperturbed matrix elements of V(A), as read off from equation 
(3 .7) ,  to obtain the first-order perturbative approximation to the stationary-state 
wavefunctions of the quartic oscillator 
q f \ J O , "  (x;  A)=VI",O'(x; A ) + ( 3 2 A 3 ) - ' { [ n ( n - 1 ) ( n - 2 ) ( n - 3 ) ] 1 ' 2 9 ~ ~ 4 ( x ;  A )  

+4[(2n - 1)-A3][n(n-1)]'/2V?!2(x; A )  

+ 4[A3 - (2n + 3)][ ( n  + 1 ) (  n + 2)]1'2'€'I",0i!2(X; A )  

- [( n + 1 ) (  n + 2)(  n + 3 ) ( n  +4)]""€' ! ,~4(~;  A)}. (3.10) 

In order to be able to find the PMs-optimised value of the 'redundant' parameter 
A in equation (3.10), we require dV:.')(x; A ) / a A ,  and thus aVE""(x; A ) / a A  for any 
m = 0, 1,2,  . . . . Unfortunately, the algebraic dependence of VE)(x;  A )  on A rapidly 
becomes more complicated as m increases. We can, however, sidestep this algebraic 
complexity by working with the generating function for the VE'(x; A ) ,  defined as 

X 

G(O)(x; s; A ) =  s"'(m!)-"2Y',0'(x; A )  ( 3 . 1 1 ~ )  
m=O 

which may be re-expressed as 

G'O'(x; s; A )  = 1 s"(m !)-'(a+)"Vbo1(x; A )  =exp(sa')9b0'(x; A )  
x 

(3.1 1 b )  
m = O  

with an explicit representation 

G'"(x; s; A)=(A/.rr)"4exp[-qAx'+(2A)'/2xs-~s']. ( 3 . 1 1 ~ )  

Equation ( 3 . 1 1 ~ )  may now be differentiated with respect to A to yield 

~ G ' " ( X ;  S ;  A ) / d A  =(4A)-'(1 - ~ A x ~ + ~ ( ~ A ) " ~ x s ) G ' O ' ( X ;  S ;  A ) .  (3.12) 

To make further progress, the factor on the right-hand side of equation (3.12) which 
multiplies Gio)(x;  s; A )  needs to be re-expressed in terms of a and a' instead of x 
and s. This is done by noting that 

sG'"(x; s; A )  = aG'"'(x; s; A ) .  (3 .13)  
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Equation (3.13), together with equation (3.5) for x, permits us to partially substitute 
for x and s in favour of a and  a+ in equation (3.12). A little algebra yields the result 

(3.14) 

which implies, from the definition (3.1 l a )  of G‘O)(x; s; A )  and the fact that the operators 
a, a+ and d/dA all commute with the quantity s, that 

dqg)(x;  A ) / a A  =(4A)-’(a2-(a’)*)VIr‘,O’(x; A )  m = O ,  1 , 2 , .  . . ( 3 . 1 5 ~ )  

or, using the lowering and  raising properties of a and a t ,  

a q t ) ( x ;  A ) / a A  = (4A)-’{[m(m - l)]’  2qt’lno)2(x; A ) - [ ( m +  l ) (m+2) ]”2q%2(x ;  A)}. 

dG“’(x; s; A ) / d A  = ( 4 A ) - ’ ( ~ ~ - ( a + ) ~ ) G ‘ ~ ’ ( x ;  s; A )  

(3.15b) 

Equation (3.15b) allows us at last to realise our goal of differentiating the first-order 
perturbative approximation to the quartic oscillator stationary-state wavefunctions, 
equation (3.10), with respect to the ‘redundant’ parameter A :  
d q “ o ’ ”  

n (x;A)ldA 

= ( 128A ‘)-I{ [ n ( n - 1 ) ( n - 2)( H - 3)( n - 4) ( n - 5)] 1’2V ko!G( X;  A ) 

+4[2( n - 2) - A3][ n (  n - 1)(  n - 2)( n - 3)]1’2’Pr14(~; A )  

+ [32A3 - ( n 2  +91 n - 42)][ n(  n - l ) ] ” 2 ’ € ’ r 1 2 ( ~ ;  A )  

+ 8[ ( n 2  + n + l)A3 - (2n3 + 3n2  + 7 n  + ~)]V!: ’ (X; A 1 
- [ 32A + ( n 2  - 89 n - 132)] [ ( n + 1 ) ( n + 2)] ’ ”4”,”:2( X;  A ) 

+ 4[2( n +  3) - A 3][ ( n + 1 )(  n + 2)( n + 3)( n + 4)]’ 2 ~ ~ o ~ 4 (  X;  A ) 

+ [ ( n  + 1)( n + 2)( n + 3)(n + 4 ) ( n  + 5)(n + 6)]1’2q!,?G(x; A I}. (3.16) 

With equations (3.10) and  (3.16) we have achieved the same degree of analytic progress 
in applying PMS optimisation to the first-order perturbative approximation to the quartic 
oscillator nth stationary-state wavefunction as had been previously attained 
(Kauffmann and Perez 1984) for only the ground-state wavefunction. The remaining 
work to be done is essentially numerical in nature-at each value of x a search is to 
be made for that value of A which will minimise the ‘sensitivity measure’ 
(NLos”(x ;  A ) / d A ) ’  of the dependence of Y!,o,l’(x; A )  on A. This is done in small 
increments of x, with the previously determined minimally sensitive value for A used 
to begin the search procedure at the incremented x, thus ensuring a continuous 
dependence of the resulting ‘optimal’ A , ( x )  on x. Except for an  occasional short 
interval in x, it is found, in practice, that this procedure locates stationary values of 
A, i.e. those which satisfy aV!,03”(x; A ) / d A  = 0. The advantage of the minimisation 
procedure adopted over searching for stationary A values is that it avoids gaps in A , ( x )  
in those short x intervals where the stationary condition cannot be satisfied with a 
continuous A, (x )  (Kauff mann and Perez 1984). Finally, the continuous A,, (x)  thus 
found is to be substituted into PL”.”(x; A 1 to obtain the PMs-optimised first-order 
perturbative approximation VLo.’)( x;  A,, ( x ) )  which must finally be renormalised, as is 
generally true of perturbative wavefunction approximations. 

Before embarking on the numerical programme outlined above, a few loose ends 
need to be tied up  analytically. First we require an  efficient procedure for numerically 
generating the unperturbed harmonic oscillator stationary-state wavefunctions 
V!?(x; A )  which occur in such profusion in the key formulae (3.10) and (3.16). We 
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can obtain a recurrence relation by multiplying Vg’(x;  A )  by (2A)l”x which, from 
equation (3 .5) ,  is equal to ( a  + a+) .  Using the lowering and raising properties of a 
and a +  we obtain 
q?yl (x;  A)=[2A/(m+l)]”’xq\I“,O’(x; A ) - [ m / ( m + 1 ) ] ” 2 q ? ~ l ( x ;  A ) .  (3 .17)  

This, combined with the explicit form (3.40) for qAo’(x; A )  allows all the q g ) ( x ;  A )  
to be numerically generated. In particular we can obtain 

q \ ” ( x ;  A )  = (2A)1’2xq~o’(x;  A )  (3 .18 )  

and, for 1 x 1 -$ a, the asymptotic behaviour 

qL:’(x; A )  - ( m  ! ) -1’2[(2A)”2x]mq~o’(x;  A ) .  (3.19) 

Since the YE’(x; A )  which occur in equations (3.10) and (3.16) all have m values 
which differ from each other by a multiple of two, it is even more efficient to use a 
recurrence relation which increments m in steps of two. This can be generated by 
multiplying V c ) ( x ;  A )  by 2Ax2, which is equal to ( a  + a + ) 2 .  The resulting recurrence 
relation is 
*\YcOl ,,,+:(x; A )  = [ ( m + 2 ) ( m + 1 ) ] - ” 2 { ( 2 A x ‘ - 2 m  - l ) q c J ( x ;  A )  

- [ m ( m - ~ ) ] ” ’ ~ ‘ , “ ! ~ ( x ;  A ) }  (3.20) 

which must be used in conjunction with the explicit forms of Vk”‘(x; A )  or *\”(x; A )  
given in equations ( 3 . 4 ~ )  and (3 .18 )  to generate all the even m or odd m wavefunctions 
q z J ( x ;  A ) .  

Finally, to aid the numerical tracing out of the minimally sensitive continuous 
A,,(x), it is useful to be able to begin from analytically determinable optimal A values 
which may be calculable at certain special values of x. For example, at x = 0 we can 
use the forms ( 3 . 1 1 ~ )  and ( 3 . 1 1 ~ )  of the generating function to obtain 

which can be inserted into equation (3.16) to obtain 

{ dY!i,::(x = O ;  A ) / d A  
N 2 / i I ( x  = 0; A ) / d A  I 

(3.22) 

Thus, for odd n,  qk0.”(x = 0; A )  is stationary for all values of A (indeed it is equal to 
zero for all A ) ,  while for even n = 21, the only finite, real stationary value occurs at 

A,,(x=O) =[99(41+ 11/28]’ ’ l=O, 1 , 2 , .  . . (3.23) 

which provides a convenient starting value for the numerical tracing out of the 
continuous A 2 / ( x ) ,  1 = 0, 1 ,  2, . . . . 

It also proves to be possible to analytically determine the asymptotic behaviour of 
A,,(x) as 1 x 1 -$E. In the limit x -$ + cc i t  can be shown from Schrodinger’s equation 
that the exact stationary-state wavefunctions of the quartic oscillator all have the 
asymptotic behaviour (not normalised) 

as x-* +s. (3.24) 

I ‘( -4)‘[(2l) !I’ ‘(128A41 !)-‘[28A3-99(41+ I ) ]  
= { ( A ’ r )  0 

l=O, 1 ,2  ) . . .  . 

- 1  *,,(XI - x exp( - x 7 / 3 )  
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Given the dominant exponential behaviour imposed by the factor exp( -+Ax2)  on 
9ko,’)(x; A )  as IxI-~oi), the asymptotic behaviour (3.24) of the exact 9 , ( x )  suggests 
that the asymptotic behaviour of A, should be of the form 

A,(x) - c IX I as /xl+oi) (3.25) 

where c is a positive constant independent of 1 x 1 and n, with a value in the vicinity 
of 3. If we bear in mind the ansatz (3.25) while inserting the asymptotic form (3.19) 
of 9 z ) ( x ;  A )  into the formula (3.16) for d9f3’ ) (x ;  h) /dA,  we arrive at the following 
result for its asymptotic behaviour: 

dY\V.””( x; A ) / d A  - ( A  / T ) ’ / ~ [  ( 2 A ) 1 / 4 ~ ] n + 6 [  128A4( n 

x [ 1 - 2( A / x ) ~ ]  exp( -;Ax2) as ) x ) + m  (3.26) 

which implies that the asymptotic behaviour of the stationary value of A is 

A,(x) - 2-’/’ 1 x I as IxI+oi) (3.27) 

consistent with the ansatz (3.25) for c = 2-”2, which is slightly larger than 3. Equation 
(3.27) provides a convenient approximate starting value of A (at some 1 x 1 >> 1) for the 
numerical tracing out of the minimally sensitive continuous A, (x )  curve, just as equation 
(3.23) provides such a starting value. 

For the ground state, n = 0, we have previously seen that the solution (3.23) having 
Ao(x = 0) = (99/28)”’ does indeed proceed continuously towards the asymptotic form 
(3.27), A o ( x )  - 2-’’2 1 x 1, as 1 x 1 + oi) (Kauffmann and Perez 1984). In the next section 
we shall see that matters do not work out quite so straightforwardly for the excited 
states, which require a piecing together of sections from more than just one minimally 
sensitive continuous h,(x) curve. 

4. PMs-optimised first-order perturbative results for the first five quartic oscillator 
stationary-state wavefunctions 

For all the quartic oscillator excited-state first-order perturbative wavefunction approxi- 
mations studied, the attempt to trace a continuous optimum h , ( x ) ,  n 3 1, from its 
asymptotic behaviour 2-’’2/ x 1 at large I x 1, equation (3.27), leads to an unacceptable 
divergence in its value toward +CC for Ix I tending toward zero. We can see this 
behaviour clearly in figure l ( a )  depicted in the outermost (broken) curve for h4(x). 
It is unacceptable because its substitution into 9k03’)(x; A ) ,  equation (3.10), to produce 
the PMs-optimised 9\ITIP.”(x; A , ( x ) ) ,  results in the latter’s divergence as Ixl+oi) as well, 
rendering it unrenormalisable and thus unphysical. This behaviour of Yk”.”( x; A4(x)) 
is shown in figure l (b) ,  also in the outermost (broken) curve. Only in the ground- 
state, n = 0, case previously studied (Kauffmann and Perez 1984) does the correct 
2-’12 I x I large I x I behaviour of A , ( x )  connect continuously to a sensible finite value 
as I x ~ + o .  

Nonetheless, we have seen from equations (3.22) and (3.23) that for all even values 
of n, there does exist a unique sensible (i.e. finite and positive) stationary value for 
A , ( x )  as (xl+O. This is also the case for the two odd n values we have studied 
numerically (for odd n, all A values are stationary at x = 0, but we do get unique finite 
and positive values for A,(x) in the limit I x I + 0, at least for the odd n values 1 and 
3 we have studied). If we start with these unique acceptable stationary values for 
h , ( x )  as 1 x 1 + 0 and continuously trace the resulting optimised A , ( x )  curves toward 
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-5 0 5 
X 

Figure 1. ( a )  Three minimally sensitive continuous positive curves for A4(x). The dotted 
curve leads to physically sensible behaviour of the corresponding optimised wavefunction 
approximation for 1x1 values sufficiently close to zero, the broken curve does the same for 
all sufficiently large I x 1 ,  while the full curve does this for the remaining intermediate 1 x 1. 
( b )  The three corresponding minimally sensitive wavefunction approximations 
'Pio,"(x; A , ( x ) ) .  Note how the intermediate full curve closely parallels the dotted curve 
for Ix  1 0.96 and does the same to the broken curve for Ix  1 = 1.85. 

larger values of 1 x 1, we find that, with the sole exception of n = 0, they fail to coincide 
with the continuous A , , ( x )  curves traced inward from the asymptotic behaviour 2-''21x1 
at large 1 x 1 .  Indeed, for the excited states, the small I x I sensible A, , (x)  curves all tend 
toward zero for large 1x1. This causes the resulting Y y . ' ' ( x ;  A , , ( x ) )  to diverge as 
I x 1 + CO, making it unrenormalisable and thus unphysical at  large I x I. We can see this 
behaviour in the innermost (dotted) curves for A 4 ( x )  and V y - ' ) ( x ;  A 4 ( x ) )  in figures 
l ( a )  and  l ( b ) .  

For the excited states, we thus see that the continuous A , ( x )  which causes 
V y * ' ) ( x ;  A , , ( x ) )  to behave sensibly (so that it might be renormalisable) as 1x1 + 0 causes 
it to behave unphysically (so that it is unrenormalisable) as 1 x I + 00. A second con- 
tinuous A , , ( x ) ,  lying entirely above this one, has just the reverse attributes. However, 
it turns out that for n = 1, 2 and 3, there is a region in I x I where the two corresponding 
P y - " ( x ;  A,,))  curves approach each other very closely and run nearly parallel. For 
n = 4 there is the additional complication in that a third continuous A 4 ( x )  curve, lying 
between the two described above, is found-see the middle (full) curve in figure 
l(a)-and it is the P i o * " ( x ;  A 4 ( x ) )  corresponding to this third curve which closely 
approaches and  parallels those corresponding to each of the first two curves in two 
separate regions of 1x1. This behaviour is shown in figure l ( b ) ,  where this third 
V y . ' ) ( x ;  A 4 ( x ) )  curve is the middle (full) one, which closely approaches and parallels 
the innermost (dotted) curve for /x(=O.96 and the outermost (broken) curve for 
1x1 = 1.85. We notice that this third curve has unphysical behaviour (not permitting 
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Figure 2. ( a )  Optimum h4( .x)  curve, pieced together from sections of the three minimally 
sensitive A4(x) curves of figure l (a ) ,  showing jump discontinuities at Ix I=0.96 and 
1 x 1 = 1.85, where their corresponding wavefunction approximations have matching logarith- 
mic derivatives. ( b i  The corresponding smoothly pieced together optimum wavefunction 
approximation qio .” (x ;  h , ( x ) ) ,  which still requires an overall renormalisation factor. 

renormalisation) both for 1x1+0 and lxl+co. For higher values of n it seems very 
likely that there will be even more continuous A , ( x )  curves lying between the lowest 
(innermost) and highest (outermost) ones, with such adjacent A,(  x)  curves having 
their corresponding q!,n-li(x; A , ( x ) )  curves approach each other closely and nearly in 
parallel at particular 1 x I values. 

Near these I x 1 values there is no basis on which to discriminate between the two 
pertinent competing T!,03”(x; A , ( x ) )  curves (Stevenson 1981), so it is permissible to 
switch from a A , ( x )  curve which will soon cause q v 3 l i ( x ;  A , ( x ) )  to take on unphysical 
values to one which will keep qtip.”(x; A , ( x ) )  in a physical regime over a longer 1x1 
domain. Before this 1x1 domain is exhausted in turn, it is required that the close, 
nearly parallel q!,o3”(x; A , ( x ) )  approach ambiguity will recur at a timely value of Ix 1, 
allowing a further A , ( x )  curve switch, etc. The precise mechanics of the switch from 
one continuous A , , ( x )  curve to the next, and from its corresponding q r 3 ” ( x ;  A , ( x ) )  
curve to the next, is subjected to the physically sensible constraint that the resulting 
approximate wavefunction must be continuously differentiable. This condition is 
readily fulfilled in practice via the observation that qy.”(x;  A,,( x))  approximations 
involving distinct A, (x )  curves should generally require distinct renormalisation con- 
stants. We go to the 1x1 value where the two nearly parallel 9!,n,’)(x; A , ( x ) )  curves 
approach each other most closely. We search to either side of this I x I value for the 
nearest 1x1 where the logarithmic derivatives of the two TLn,’)(x; A , ( x ) )  curves are 
equal. In  practice, we have always found that the region of nearly parallel, closest 
approach of the two curves includes a point 1 x I where their logarithmic derivatives 
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Figure 3. ( a )  Optimum A , ( x )  curve. ( b )  The corre- 
sponding renormalised optimum wavefunction 
approximation 'Pho."(x; A,(x)) (dotted curve) 
together with the exact wavefunction 'P,,(.x) (full 
curve). The dotted optimum approximation curve 
cannot be resolved. 
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Figure 4. The same as figure 3 for the first excited 
state. The dotted optimum approximation curve can- 
not be resolved. 

are equal. At this I x 1 value we make the switch from the physically less propitious 
A , ( x )  (for subsequent Ix 1 values) to the physically more propitious one, simultaneously 
multiplying one of the corresponding Y ~ o s ' ) ( x ;  A , ( x ) )  curves by a relative renormalisa- 
tion constant, chosen so that this curve is made equal to the other Yf3' ) (x;  A , ( x ) )  
curve at this 1 x I value. 

Thus, though the switch from one continuous A,(x) to another generally involves 
a jump discontinuity, the join between their corresponding relatively renormalised 
Yko*')(x; A, (x) )  curve sections is completely smooth (continuously differentiable). For 
the case n = 4 we can observe the behaviour of these pieced together curves in figure 
2. Figure 2 ( a )  shows the pieced together A4(x) curve, built from sections of the three 
A4(x) curves shown in figure l ( a ) ,  having switched from one to the next at the two 
jump discontinuities at I x 1 -- 0.96 and I x I = 1.85, where the logarithmic derivatives of 
the corresponding Y y ~ ' ) ( x ;  A4(x)) are equal. On the other hand, the pieced together 
Y:3' ' (x;  h4(x)) curve shown in figure 2 ( b )  is completely smooth, for the sections of 
the three curves from figure 1 ( b )  which comprise it are relatively renormalised to be 
equal at the switchover points, which in turn are located where the logarithmic 
derivatives of the pieced together curves match. The resulting smoothly pieced together 
wavefunction approximation curve will still require an  overall renormalisation. It is 
worthwhile pointing out here that in all the cases studied, both the relative and overall 
renormalisation constants needed have come out quite close to unity, a partial testimony 
to the inherent trustworthiness of the approach. 
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Figure 5. The same as figure 3 for the second excited 
state. 
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Figure 6. The same as figure 3 for the third excited 
state. 

In addition to the jump discontinuities of the optimum A4(x) curve shown in figure 
2 ( a ) ,  we observe further cusps at lxl=O.14 and IxI=O.33. These are not due to 
discontinuities, but are already present in the innermost (dotted) continuous A4(x) 
curve shown in figure l ( a ) .  They are associated with the fact that this continuous 
A4(x) curve does not consist of stationary values of qY.”(x;  A )  for 0.146 1x1s 0.33; 
it only locally minimises (fWio9”(x; A ) / ~ A ) ’  to non-zero values in this 1x1 domain, 
which we may call a stationary A value gap. For all other values of 1x1, this A4(x) 
consists entirely of stationary points and the other two continuous A4(x) curves shown 
in figure l ( a )  are both made up of only stationary A values for all 1x1. The existence 
of such cusps, apparently reflecting a discontinous derivative near the endpoints of a 
stationary A value gap, has already been encountered for n = 0 (Kauffmann and Perez 
1984) and we encounter it as well for n = 2 and 3. At the locations of these cusps the 
corresponding q y . ’ ) ( x ;  A,, (x) )  curves are completely smooth and generally monotonic 
(for example, see the dotted curve in figure l ( b )  for the case n =4) .  Thus these cusp 
features at the endpoints of a stationary A value gap pose no problems for the 
smoothness and physical acceptability of the corresponding q\vip*’’(x; A,(x)) curves. 
Nonetheless it is of interest that the total number of cusps which are present on a 
pieced together A,(x) curve, whether these are associated with gaps in stationary A 
values or with jump discontinuities where curve sections are pieced together, seems 
to bear a simple relationship to n. An examination of figures 3(a)-7(a) shows that 
A,(x) through to A4(x) are consistent with the guess that the optimum A2, , (x )  and 
A2n+l(x)  both have 4 ( n + l )  cusps, n =0 ,1 ,2 , .  . . . 

Finally, we wish to compare the optimised qy , ’ ) (x ;  A,(x)), after overall renormali- 
sation, with the exact quartic oscillator stationary-state wavefunctions q,, (x),  which 
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Table 1. Quartic oscillator ground-state wavefunction. 

Point-by- 
point Exact Energy 
optimised Renormalised wavefunction optimised Renormalised 

X 
q ( 0 )  (x;  A,) qio.”(x; A o )  Ao(x) Yho.I’(x; A o ( x ) )  q 0 ( x )  A 0  

~~ 

0 1.52 
0.5 1.52 
1.0 1.50 
1.5 1.60 
2.0 1.78 
2.5 2.02 
3.0 2.31 
3.5 2.61 
4.0 2.94 
4.5 3.27 
5.0 3.60 

0.795 
0.692 
0.425 
0.156 
2.73 x 
1.74 X 

3.05 x 1 0 - ~  
1.11 x 1 0 - ~  

4 . 4 4 ~  1 0 - l ~  

6.40 x lo-” 

2.83 x 

0.793 
0.691 
0.427 
0.159 
2.84 x IO-* 
1.90X 
3.72 x IO-’ 

1 . 2 9 ~  10-l’ 
1.65 x 

1.38 x 10-l4 
1.57 x 1 0 - l ~  

1.44 
1.44 
1.44 
1.44 
1.44 
1.44 
1.44 
1.44 
1.44 
1.44 
1.44 

0.823 
0.687 
0.400 
0.162 
4.60 x 
9.08 x IO-’ 
1.25 x IO-) 
1.20 x 
8.03 x 
3.75 x IO-’ 
1.22 x 

0.796 
0.692 
0.425 
0.152 
1.39 x 

-1.17X 
-5.53 x IO-’ 
- 1 . 1 8 ~  IO-) 
- 1 . 4 7 ~  

-5.93 x IO-’ 
-1.16X IO-’ 

Table 2. Quartic oscillator first excited-state wavefunction. 

Point-by- 
point Exact Energy 
optimised Renormalised wavefunction optimised Renormalised 

X Ai(x) Y:os”(x;  A , ( x ) )  Yl(x)  A 1  q\’)(x; A i )  Ypl)(x; A I )  

0 1.89 
0.5 1.83 
1.0 1.75 
1.5 1.87 
2.0 1.99 
2.5 2.19 
3.0 2.44 
3.5 2.72 
4.0 3.02 
4.5 3.34 
5.0 3.66 

0 
0.609 
0.705 
0.356 
7.65 x 
5.76 x io-’ 
1 . 1 8 ~  1 0 - ~  
4.98 x 1 0 - ~  

2.64 x 1 0 - l ~  

1.92 x 1 0 - l ~  

3.31 x IO-”  

0 
0.608 
0.704 
0.359 
7.72 x lo-* 

1.25 X 

5.85 x 10-3 

5.89 x io-’ 

5.35 x 10-14 
6.27 x 1 0 - 1 ~  

4.82 x 10-l’ 

1.71 
1.71 
1.71 
1.71 
1.71 
1.71 
1.71 
1.71 
1.71 
1.71 
1.71 

0 
0.641 
0.676 
0.348 
0.104 
1.90 x lo-* 
2.17 x 1 0 - ~  
1.57 x 

2 . 1 6 ~  1 0 - ~  
4 . 1 4 ~  1 0 - ~  

7.28 x IO-’ 

0 
0.611 
0.706 
0.353 
6.13 x 

-1.16X lo-’ 
-6.69 x 10-3 
- 1 . 1 7 ~   IO-^ 
- 1 . 0 4 ~  
-5.34x 
- 1 . 6 3 ~  io-’ 

Table 3. Quartic oscillator second excited-state wavefunction. 
~ ~- 

Point-by- 
point Exact Energy 
optimised Renormalised wavefunction optimised Renormalised 

X h 2 ( ~ )  Y:o*l’(x; A 2 ( x ) )  Y 2 ( x )  A 2  wio)(x; A 2 )  ‘@,‘)(x; A * )  

0 2.61 
0.5 1.77 
1.0 1.92 
1.5 2.22 
2.0 2.16 
2.5 2.33 
3.0 2.55 
3.5 2.81 
4.0 3.10 
4.5 3.40 
5.0 3.72 

-0.645 
-0.127 

0.652 
0.572 
0.161 
1.46 x 

1.68 X lo-‘ 

1.15X 

3.47 x 

1.27 x 1 0 - ~  

9.49 x 1 0 - l ~  

-0.679 
-0.139 

0.630 
0.572 
0.163 
1.46 x IO-’ 

1.80 x lo-’ 
3.51 x 1 0 - ~  

1.57 x 1 0 - ~  
1.83 x 1 0 - 1 3  

2.24 x lo-” 

1.98 
1.98 
1.98 
1.98 
1.98 
1.98 
1.98 
1.98 
1.98 
1.98 
1.98 

~ 

-0.630 -0.659 

0.694 0.646 
0.536 0.572 
0.177 0.155 

-4.13 x IO-) -0.122 

3.05 x 10-2 1 . 4 4 ~  10-3 
2.91 x 10-3 -5.31 x 10-3 
1.59 x 1 0 - ~  -8.36 x 10-4 
5.07 x  IO-^ -5.50 x 10-5 

1 . 0 6 ~  -3.33 x 
9.51 X lo-’ - 1 . 8 4 ~  
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Table 4. Quartic oscillator third excited-state wavefunction. 

Point-by- 
point Exact Energy 
optimised Renormalised wavefunction optimised Renormalised 

X 
*CO, (x;  A3)  *\'*')(x; A 3 )  

A3(x) Y\o."(x; A 3 ( x ) )  Y 3 ( x )  A 3  
~ 

0 2.51 
0.5 2.33 
1.0 2.10 
1.5 2.05 
2.0 2.33 
2.5 2.45 
3.0 2.65 
3.5 2.90 
4.0 3.17 
4.5 3.46 
5.0 3.77 

0 
-0.634 

0.180 
0.700 
0.281 
3 . 1 4 ~  lo-' 

4.83 x 

4.22 x lo-" 
3.90 x lo-'* 

8.71 x 

4.15 x 1 0 - ~  

0 2.20 
-0.636 2.20 

0.163 2.20 
0.695 2.20 
0.290 2.20 
3.22 x lo-' 2.20 

5.01 x lo-' 2.20 

5.82 x lo-" 2.20 

8 . 8 4 ~  1 0 - ~  2.20 

4.71 x 1 0 - ~  2.20 

7.43 x lo-'* 2.20 

0 
-0.565 

0.367 
0.682 
0.279 
4.91 x 

1.91 x lo-' 
4.64 x 
6 . 1 6 ~  lo-' 

4.24 x io-' 

4.53 x 10-'O 

0 
-0.629 

0.182 
0.700 
0.284 
2.25 x lo-' 

-4.25 x 
-7.31 x 1 0 - ~  
-3.96 x io-* 
-9.71 X lo-' 
-1.19X lo-' 

Table 5. Quartic oscillator fourth excited-state wavefunction. 

Point-by- 
point Exact Energy 
optimised Renormalised wavefunction optimised Renormalised 

Y A,(.%) 'P\'."(x; A 4 ( x ) )  'P4(x) A4 ul;''(x; A 4 )  'Pp')(x; A 4 )  

0 3.17 
0.5 2.30 
1.0 2.46 
1.5 2.23 
2.0 2.51 
2.5 2.56 
3.0 2.75 
3.5 2.98 
4.0 3.24 
4.5 3.52 
5.0 3.82 

0.591 
-0.290 
-0.404 

0.618 
0.423 
6.03 x lo-' 
1.98 x io-' 
1.25 x lo-' 
1.21 x 
1 . 3 9 ~  lo-" 
1.43 x 10-I' 

0.616 2.39 
-0.265 2.39 
-0.401 2.39 

0.614 2.39 
0.446 2.39 
6.36 x 2.39 
2.05 x lo-.' 2.39 
1.29 x lo-' 2.39 
1.32 x lo-* 2.39 
1 . 7 4 ~  lo-" 2.39 
2 . 3 4 ~  lo-'' 2.39 

0.572 
-0.388 
-0.163 

0.702 
0.406 
7.78 x 
6.47 x io-' 
2.57 x 1 0 - ~  
5.08 x 
5.15 x 
2.72 x lo-'' 

0.586 
-0.279 
-0.400 

0.628 
0.437 
5.63 x lo-* 

-2.78 x io-) 
-7.15 x 
-3.47 x 
-6.77 x io-' 
-6.07 x 

we have computed numerically with the aid of their energy eigenvalues, available in 
the literature (Hioe et al 1978). The results are shown in figures 3( b)-7( b )  for n = 0-4 
respectively. The full curves are the exact wavefunctions *,,(x), while the dotted 
curves are the renormalised optimum Vr3"(x;  A , , ( x ) ) .  For the cases n = O  and 1 no 
dots are visible, for the curves coincide to within about the line width. For n = 2 ,  3 
and 4 the agreement is not so precise, but still respectable. 

These linear axis plots cannot usefully depict the comparison of the exact and 
approximate wavefunctions in the large 1 x I region where both are extremely close to 
zero. For this reason, we also include tables 1-5, which provide the numerical values 
of these wavefunctions on a coarse mesh of x values ranging from 0-5. In addition, 
we include in these tables the values of other approximate wavefunctions which are 
calculated by closely allied, albeit rather less sophisticated, methods. These entail the 
use of a fixed A,, value for all x, namely that given in equation (3.96), which follows 
from the optimisation of the first-order energy eigenvalue E!,03"(A), as described in 
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Figure 7. The same as figure 3 for the fourth excited state. 

equations (3.8) and (3.9). One column of each table has the values of the zeroth-order 
wavefunction for this fixed A = A,, i.e. Y!,’)(x; A,) ,  while another column has the values 
of the first-order wavefunction approximation (as renormalised) for this fixed A,, i.e. 
Y y , ” ( x ;  A,,). A glance at the tables shows that these fixed A, approximate wavefunc- 
tions, especially the first-order one, can compete well with our renormalised 
Y!,O.”(x; A , ( x ) )  approximations at the smaller 1x1 values. However, they fare very 
poorly for the larger 1x1 values; the first-order perturbative fixed A, approximation 
appears to always develop an  unphysical extra node there. This is not surprising, for 
the perturbative potential V(A) of equation ( 3 . 1 ~ )  becomes large with increasing Ix 1, 
causing a breakdown of orthodox perturbation theory, while our point-by-point 
optimised A, (x)  continues to yield reasonable results. It permits perturbation theory 
to function effectively even for strong couplings. 

It is indeed the flexibility inherent in the point-by-point PMS wavefunction optimisa- 
tion approach which makes this technique a welcome addition to the standard repertoire 
of approximation methods. We have seen here that its success for the quartic oscillator 
ground-state wavefunction may be extended to the excited states as well, once certain 
technical complications have been resolved. 
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